3 resultados para East China Sea

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two cruises were carried out in the summer and winter of 1998 to study coupled physical-chemical-biological processes in the South China Sea and their effects on phytoplankton stock and production. The results clearly show that the seasonal distributions of phytoplankton were closely related to the coupled processes driven by the East Asian Monsoon. Summer southwesterly monsoon induced upwelling along the China and Vietnam coasts. Several mesoscale cyclonic cold eddies and anticyclonic warm pools were identified in both seasons. In the summer, the upwelling and cold eddies, both associated with rich nutrients, low dissolved oxygen ( DO), high chlorophyll a (Chl a) and primary production ( PP), were found in the areas off the coast of central Vietnam, southeast of Hainan Island and north of the Sunda shelf, whereas in the winter they form a cold trough over the deep basin aligning from southwest to northeast. The warm pools with poor nutrients, high DO, low Chl a, and PP were found in the areas southeast of Vietnam, east of Hainan, and west of Luzon during the summer, and a northwestward warm jet from the Sulu Sea with properties similar to the warm pools was encountered during the winter. The phytoplankton stock and primary production were lower in summer due to nutrient depletion near the surface, particularly PO4. This phosphorus depletion resulted in phytoplankton species succession from diatoms to dinoflagellates and cyanophytes. A strong subsurface Chl a maximum, dominated by photosynthetic picoplankton, was found to contribute significantly to phytoplankton stocks and production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous mesoscale eddies occur each year in the South China Sea (SCS), but their statistical characteristics are still not well documented. A Pacific basin-wide three dimensional physical-biogeochemical model has been developed and the result in the SCS subdomain is used to quantify the eddy activities during the period of 1993-2007. The modeled results are compared with a merged and gridded satellite product of sea level anomaly by using the same eddy identification and tracking method. On average, there are about 32.9 +/- 2.4 eddies predicted by the model and 32.8 +/- 3.4 eddies observed by satellite each year, and about 52% of them are cyclonic eddies. The radius of these eddies ranges from about 46.5 to 223.5 km, with a mean value of 87.4 km. More than 70% of the eddies have a radius smaller than 100 km. The mean area covered by these eddies each year is around 160,170 km(2), equivalent to 9.8% of the SCS area with water depths greater than 1000 m. Linear relationships are found between eddy lifetime and eddy magnitude and between eddy vertical extent and eddy magnitude, showing that strong eddies usually last longer and penetrate deeper than weak ones. Interannual variations in eddy numbers and the total eddy-occupied area indicate that eddy activities in the SCS do not directly correspond to the El Nino-Southern Oscillation events. The wind stress curls are thought to be an important but not the only mechanism of eddy genesis in the SCS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Princeton Ocean Model is used to study the circulation in the South China Sea (SCS) and its seasonal transition. Kuroshio enters ( leaves) the SCS through the southern ( northern) portion of the Luzon Strait. The annually averaged net volume flux through the Luzon Strait is similar to2 Sv into the SCS with seasonal reversals. The inflow season is from May to January with the maximum intrusion of Kuroshio water reaching the western SCS during fall in compensation of summertime surface offshore transport associated with coastal upwelling. From February to April the net transport reverses from the SCS to the Pacific. The intruded Kuroshio often forms an anticyclonic current loop west of the Luzon Strait. The current loop separates near the Dongsha Islands with the northward branch continuously feeding the South China Sea Warm Current (SCSWC) near the shelf break and the westward branch becoming the South China Sea Branch of Kuroshio on the slope, which is most apparent in the fall. The SCSWC appears from December to February on the seaward side of the shelf break, flowing eastward against the prevailing wind. Diagnosis shows that the onshore Ekman transport due to northeasterly monsoon generates upwelling when moving upslope, and the particular distributions of the density and sea level associated with the cross shelf motion supports the SCSWC.